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_____________________________________________________________________________ 

В работе представлены результаты численного моделирования трубобетонных 

конструкций на сжатие и трехточечный изгиб с использованием ANSYS Mechanical 

APDL. Учтены контактные взаимодействия между материалами, что позволило 

исследовать поля деформаций и напряжений, а также явления расслоения и локального 

смятия. Полученные данные сопоставлены с экспериментальными, что способствует 

уточнению моделей и их приближению к реальным условиям эксплуатации. 

_____________________________________________________________________________ 

 

Введение 

История трубобетонных конструкций берет свое начало в первой половине 

ХХ века. В настоящее время трубобетоны применяются в строительстве 

автомобильных и железнодорожных мостов, эстакад, высотных зданий, а также 

различных комплексов (спортивных, развлекательных и др.). Численное, а также 

экспериментальное исследование работы трубобетонных образцов во многом 

отражено в работах отечественных [1–5] и зарубежных ученых [6–12]. Большим 

преимуществом сталежелезобетонов, в сравнении с железобетоном, является 

способность выдерживать большие нагрузки при меньшем поперечном сечении. В 

настоящее время сталежелезобетонные колонны находят широкое применение во 

многих зарубежных странах, немалое внимание уделяется рассмотрению колонн 

из трубобетона на осевое сжатие [9–11], а также сейсмостойкость [6, 12]. Работа 

трубобетонных конструкций, в отличие от обычных железобетонных, 

исследована в значительно меньшей степени. Перспективы развития, а также 

эффективность использования конструкций из трубобетона создают 

необходимость рассмотрения и возможности моделирования механического 

поведения образцов сталежелезобетонов. Помимо изучения деформации образцов 

в условиях осевого сжатия, которому уделяется особое внимание, не менее 

важным является рассмотрение работы трубобетонной балки на изгиб. В 

реальных условиях эксплуатации практически невозможно выделить только 

сжатый элемент [13], а для анализа элементов необходимо детальное изучение 
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работы при чистом и поперечном изгибе. Комплексное решение задач о работе 

сталежелезобетонных конструкций является важным при создании методик 

расчета, а также прогнозированию реальной работы конструкций из этого 

материала. 

Постановка задачи об одноосном сжатии, компьютерное моделирование 

Для моделирования колонн в системе ANSYS Mechanical APDL было 

использовано 2 типа конечных элементов: solid65 и solid186. Solid186 

определяется двадцатью узлами, имеет 3 степени свободы и более высокий 

порядок точности. Этот тип конечного элемента был использован для 

моделирования трубы и арматуры. Для бетона подходящим типом конечного 

элемента является solid65, который позволит рассмотреть возникновение трещин 

в процессе разрушения заполнителя трубы. 

В табл. 1 представлены механические характеристики составных элементов 

колонны: 

Таблица 1 
Элемент E, МПа ν 𝜎𝑡, МПа 𝜏𝑡, МПа 

Труба 2,06×105 0,27 300 20×103 

Бетон 1,2×104 0,2 18 3 

Арматура 2×105 0,3 300 20×103 

 

Геометрические параметры моделируемых образцов представлены на рис. 1 

и рис. 2. Размеры указаны в мм. 

 
 

Рис. 1. Геометрические параметры образца армированной трубобетонной колонны 

 

 
 
Рис. 2. Геометрические параметры образца неармированной трубобетонной колонны 

 

Для решения задачи на одноосное сжатие на нижней поверхности 

цилиндрической модели исключаются линейные перемещения во всех 

направлениях. На верхней поверхности задается перемещение вдоль оси 
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направляющих образца в размере 10 % от длины образца. В данном случае оно 

будет равным 85 мм. Граничные условия для модели без армирования идентичны 

модели армированной колонны. После построения модели происходит наложение 

сетки на образцы трубобетонов. С помощью команды “Mesh Attributes” каждому 

объему ставится соответствующая модель материала. Разбиение происходит с 

помощью метода построения сетки “Sweep”. 

Анализ результатов решения задачи об одноосном растяжении 

После расчета задачи рассматривается распределение напряжений по 

Мизесу в исследуемых образцах. Максимальные значения деформаций и 

напряжений по Мизесу приведены в табл. 2. 

Таблица 2 
 Армированный 

образец 

Неармированный 

образец 

Напряжение по Мизесу, Па 235×107 241×107 

Упругие деформации, д.ед. 0,008 0,0049 

Пластические деформации, д.ед. 0,092 0,095 

 

Таким образом, использование армирования в трубобетоне помогает 

уменьшить максимальное напряжение по Мизесу на 2,5 %, максимальные 

пластические деформации – на 3,2 %. Стоит упомянуть, что при задании в образце 

перемещения вдоль оси направляющих в нем может возникнуть расслоение в 

силу разницы в механическом поведении составных элементов конструкции. 

На основании рассмотренных задач можно сделать вывод о влиянии 

армирования на механическое поведение образцов армированного и 

неармированного трубобетонов [14]. При сжатии армирование помогает 

уменьшить напряжение и деформации трубы, однако открытым остается вопрос 

детального рассмотрения трещинообразования, а также разрушения бетона. 

Постановка задачи о трехточечном изгибе, компьютерное 

моделирование 

Так как для рассмотрения ситуации реальной эксплуатации трубобетонных 

конструкций необходимо комплексное решение задач об их механическом 

поведении, рассматривается задача о трехточечном изгибе, в которой 

рассматривается неармированный образец трубобетона (рис. 3): 

 

 

 
 

 

Рис. 3. Геометрические параметры трубетонной колонны и расчетная схема при 

испытании на трехточечный изгиб 
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В табл. 3 представлены механические характеристики составных элементов 

колонны: 

Таблица 3 
Элемент E, МПа ν 𝜎𝑡, МПа 𝜏𝑡, МПа 

Труба 2,06×105 0,27 300 20×103 

Бетон 1,2×104 0,2 18 3 

 

Для решения задачи на расстоянии 600 мм на модели строятся цилиндры, 

имитирующие опоры рассматриваемого образца (А и В), для них запрещаются 

перемещения в направлении оси Y. Для цилиндра, имитирующего ролик (С) 

задаем перемещение вдоль оси Y образца в размере 38 мм (радиус образца). 

Заданные граничные условия отображены на рис. 4. 

 

 
 

Рис. 4. Граничные условия в модели трубобетонной колонны 

 

Результаты решения задачи о трехточечном изгибе и их анализ 

Для решения задачи после построения модели происходит наложение сетки 

на образец трубобетона. Разбиение происходит с помощью метода построения 

сетки “Sweep”. После расчета задачи рассмотрим распределение напряжений по 

Мизесу в каждом составном элементе конструкции (рис. 5): 

 

 
а                                                                              б 

 

Рис. 5. Напряжения по Мизесу в составных элементах трубобетона (Па)  

(а – стальная труба, б – бетонный сердечник) 

 

В результате решения задачи в образце возникнет расслоение (рис. 6), 

которое можно связать с гораздо меньшей способностью бетонного заполнителя 
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работать на изгиб, в сравнении со стальной трубой, а также возникновению 

напряжений в силовых точках, а вследствие – искривлению (депланации) сечения. 

В точках закрепления, а также точке давления на цилиндр можно заметить 

значительное увеличения деформации, что может привести к возникновению 

трещин, а также разрушению бетонного заполнителя. 
 

 
 

Рис. 6. Возникновение трещин и расслоения вследствие локальных деформаций в бетоне 

(мм) 

 

В условиях трехточечного изгиба в трубобетоне возникают значительные 

местные напряжения, приводящие, помимо общего искривления, к локальному 

деформированию в локальных областях, что также может привести к 

возникновению трещин и расслоения в образце. 

Согласно эксперименту [15], реальная работа трубобетонного образца при 

трехточечном изгибе заметно отличается от модели Бернулли, не учитывающей 

влияние наличия бетонного сердечника. Возникновение локальных деформаций, а 

также искривлений сечений делает применение данной модели нецелесообразным 

в силу того, что она будет являться грубым приближением реальной конструкции. 

При согласовании результатов решения в ANSYS Mechanical APDL с полученной 

экспериментальной диаграммой деформирования [15] (рис. 7), получаем 

несовпадения. Сравним полученные диаграммы: 

 

  
 

Рис. 7. Сравнение диаграмм деформирования образца трубобетона 
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Можем отметить близость к упругой работе на начальных участках 

диаграмм, а также качественное сходство. Несовпадения возникают вследствие 

использования билинейной модели упрочнения, а также сложности в уточнении 

механических характеристик бетона (в составном сталебетонном стержне 

характеристики бетона отличаются от традиционных, принимаемых по нормам). 

Численное исследование подтверждает необходимость оценки влияния бетонного 

сердечника и невозможности в данном случае использовать изгибную модель 

Бернулли в силу возникновения искривлений сечения и локальных деформаций. 

Заключение 

При сравнении решений задач на сжатие трубобетонных образцов заметно 

влияние наличия армирования на возникающие напряжения и деформации. 

Введение в сечение арматур также помогает увеличить несущую способность 

трубобетона. В частности, армирование помогает уменьшить максимальное 

напряжение по Мизесу на 2,5 %, максимальные пластические деформации –                      

на 3,2 %. 

На основании решенной модели трехточечного изгиба можно сделать вывод 

о влиянии местных деформаций на работу всей конструкции и необходимости 

учета этого влияния на несущую способность трубобетона в реальных условиях 

эксплуатации. Также заметно возникновение локальных смятий в местах 

закрепления и давления роликом в силу местного увеличения напряжения на этих 

участках в несколько порядков (360×107 – максимум в точках приложения силы 

при 781×104 – минимум). 

Применение классических моделей изгиба балок в случае с тонкостенными 

трубными конструкциями нерационально и дает излишние запасы, поскольку не 

учитывает локальное смятие и деформирование сечений. Расчет массивных 

изгибаемых трубобетонов следует выполнять с учетом локальных деформаций. 
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The paper presents the results of numerical modeling of concrete-filled steel tube 

structures subjected to axial compression and three-point bending using ANSYS Mechanical 

APDL. Contact interactions between materials are taken into account, which made it possible to 

study the fields of deformations and stresses, as well as the phenomena of delamination and 

local buckling. The data obtained are compared with experimental data, which helps to refine 

the models and bring them closer to real service conditions. 

_____________________________________________________________________________ 
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