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В статье представлены результаты разработки специализированной системы 

автоматизированного проектирования (САПР), предназначенной для определения 

значений и картины распределения аэродинамических параметров глобоидных 

поверхностей. В ходе работы выполнено компьютерное моделирование 

аэродинамического обтекания заданной геометрии в программном комплексе Ansys CFX. 

На основе полученных данных разработана алгоритмическая структура основной 

программы и подпрограмм, представленных в виде детализированных блок-схем. 

 

Введение 

Ветровое воздействие оказывает значительное влияние на проектирование и 

эксплуатацию различных объектов инфраструктуры и техники [1–3]. Оно 

способствует возникновению положительных и отрицательных давлений на 

поверхности тел, появлению турбулентности, приводящей к изменению 

плотности и скорости воздушных масс. 

В настоящее время компьютеризация и цифровизация численного решения 

аэродинамических задач основываются на решении уравнений Навье-Стокса [4]. 

Аналитическое решение этих уравнений в общем случае невозможно из-за 

нелинейности их членов, в связи с чем для практического применения 

используются численные методы, позволяющие аппроксимировать решение 

путем дискретизации расчетной области на конечные элементы или контрольные 

объемы с последующим численным интегрированием исходных уравнений [5]. 

Глобоидные поверхности представляют собой особую категорию 

геометрических форм, полученных путем вращения эллиптического сечения или 

дуги окружности вокруг одной из осей [6]. Такая форма имеет переменную 

отрицательную гауссовую кривизну вдоль поверхности, что делает ее удобной 

для определенных видов нагрузок и условий эксплуатации. Такие поверхности 
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или поверхности, близкие к глобоидным, широко применяются в технических 

системах и механизмах, а также в строительстве [7–9]. 

Следует отметить, что формообразование и параметрическое моделирование 

глобоидных поверхностей является более простой задачей, по сравнению с 

гиперболоидными, а разработанные для глобоидов алгоритмы и методы 

аэродинамического анализа применимы в том числе и для гиперболоидных 

поверхностей с малой кривизной (рис. 1). 

 

 
 

Рис. 1. Наложение форм гиперболоида и глобоида при относительной кривизне:  

а – малой; б – средней; в – большой 

 

Математическое описание глобоидных поверхностей 

Поверхность глобоида можно выразить в виде параметрической 

зависимости, записанной как для внутренней части тороидной поверхности с 

определенными ограничениями. При проведении исследования было рассмотрено 

два случая глобоидной поверхности: 

1) R1 = R2 = R (рис. 2а). 

Угол α может быть определен как: 
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где Rд – радиус образующей дуги окружности, r – радиус горловины поверхности. 

Вводятся дополнительные ограничения для образования замкнутой 

поверхности: 
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2) R1 ≠ R2 (рис. 2б). 
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Параметрическая запись координат поверхности в этом случае записывается 

так же, как в формуле (2), однако с измененными ограничениями: 
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а      б 

 

Рис. 2. Геометрическая интерпретация поверхности глобоида при: а – равных размерах 

оснований; б – различных размерах оснований 

 

Компьютерное моделирование аэродинамических процессов 

Компьютерное моделирование является одним из ключевых этапов 

разработки САПР, позволяющим заранее спрогнозировать поведение системы 

[10–12]. Для оценки влияния аэродинамических воздействий на исследуемые 

глобоидные поверхности применялись компьютерные программы, в которых 

реализованы модели потоков газов и жидкостей, в частности был использован 

Ansys CFX [13]. 

Объект исследования в плоскости распространения потока имеет форму 

круга, следовательно, для эксперимента необходимо только одно направление 

ветровых потоков. Рабочая область задана в виде параллелепипеда, так как при 

такой форме дискретизация сетки производится в более короткое время по 

сравнению с радиальными формами (рис. 3). 

В качестве начальных условий задается профиль скорости ветра, 

постоянный по высоте. Значение скорости определяется из формулы 11.3 [14]: 
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   а      б 

 

Рис. 3. Дискретизация рабочей области: а – общий вид; б – сгущение сетки вблизи 

объекта исследования 

 

На границах расчетной области задаются необходимые условия: 

– на передней грани (Inlet) задается профиль скорости ветра; 

– на задней, верхней и боковых гранях (Outlet) задаются аналогичные 

параметры турбулентности, как и на входной границе, а также нулевое 

избыточное давление; 

– на нижней границе и на поверхности объекта – условие непроницаемой 

стенки. 

Результаты компьютерного моделирования аэродинамического обтекания 

глобоидных поверхностей представлены на рис. 4. 

 

 
Рис. 4. Результаты компьютерного моделирования при параметрах формы: 

а) R1 = 8,0, R2 = 6,0, d = 5,5; б) R1 = R2 = 7,5, d = 5,5; в) R1 = R2 = 8,0, d = 4,5 

 

В общем случае было исследовано 28,0 цифровых моделей с различными 

параметрами: 

1) R = const, H = const, r ≠ const (7,0 цифровых моделей); 

2) R ≠ const, H = const, r = const (8,0 цифровых моделей); 

3) R = const, H ≠ const, r = const (6,0 цифровых моделей); 

4) R1 ≠ R2 (7,0 цифровых моделей). 
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Алгоритм автоматизированного расчета аэродинамических параметров 

При анализе результатов компьютерного моделирования аэродинамических 

особенностей поверхности глобоида было установлено, что имеются                       

3 характерные картины распределения искомых параметров (рис. 5–7). Каждая 

картина была разделена на области (А, В и С), для которых были получены 

осредненные значения аэродинамических коэффициентов. 

 

   
а    б 

  
в     г 

 

Рис. 5. Картины распределения аэродинамических коэффициентов: а – общий вид первой 

картины при R1 = R2 (k < 0,15); б – для зоны "A"; в – для зоны "B"; г – для зоны "C" 

 

 

 
а     б    в 

 

Рис. 6. Картины распределения аэродинамических коэффициентов: а – общий вид второй 

картины при R1 = R2 (k ≥ 0,15); б – для зоны "A"; в – для зоны "B" 
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а                                                  б                                        в 

 

Рис. 7. Картины распределения аэродинамических коэффициентов: а – общий вид 

картины при R1 ≠ R2; б – для зоны "A"; в – для зоны "B" 

 

Для возможности выделения момента, когда меняется характерная картина, 

вводится коэффициент формы, который в общем случае определяется по 

формуле: 

H

rRR
k

2

2
21
−+

=  (6) 

где: R1, R2 – радиусы нижнего и верхнего оснований глобоидной формы; r – 

радиус горловины глобоидной формы; H – высота формы. 

В процессе определения аэродинамических коэффициентов на глобоидной 

поверхности в первую очередь осуществляется ввод параметров R1, R2 и r. Выбор 

картины распределения аэродинамических характеристик зависит от введенных 

исходных данных: 

– при R1 = R2 и k < 0,15 – картина 1; 

– при R1 = R2 и k ≥ 0,15 – картина 2; 

– при R1 ≠ R2 

Значение искомого параметра зависит от высоты, на которой располагается 

интересующая точка или сечение. Алгоритмизация принадлежности 

аэродинамических картин к рассматриваемой высоте продемонстрирована в виде 

блок-схем (рис. 8–10). 

На основании полученных в результате проведенного исследования 

алгоритмов была разработана САПР, предназначенная для определения картины 

распределения аэродинамических показателей. На стартовом окне пользователь 

вводит высоту исследуемой формы и 3 радиуса: верхнего и нижнего оснований, а 

также горловины (рис. 11а). На основании этих входных данных происходит 

расчет миделева сечения с выводом полученного значения на главном экране. 

После подтверждения введенных результатов открывается второе окно, где 

представлена матрица распределения коэффициентов, отражающая 

аэродинамические характеристики по дискретной сетке (рис. 11б). Разработанная 

САПР состоит из подпрограммы, определяющей выбор сечения на 

рассматриваемой высоте (рис. 12), и основной программы, описывающей всю 

логику программного кода (рис. 13). 
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Рис. 8. Алгоритм определения аэродинамических параметров для картины 1 

 

 

 
Рис. 9. Алгоритм определения аэродинамических параметров для картины 2 

 

 

 
Рис. 10. Алгоритм определения аэродинамических параметров для картины 3 
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а      б 

Рис. 11. Интерфейс системы автоматизированного расчета: а – начальный экран;                          

б – экран результатов 

 

 
 

Рис. 12. Блок-схема подпрограммы 
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Рис. 13. Блок-схема основной программы 
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Заключение 

Проведенное исследование позволило разработать эффективные алгоритмы 

автоматизированного расчета аэродинамических параметров глобоидных 

поверхностей. Представленные алгоритмы существенно сокращают трудоемкость 

расчетов по сравнению с традиционными ручными методами, обеспечивая 

точность и надежность результатов. Автоматизация процесса расчета имеет 

значительный потенциал для дальнейшего совершенствования методов анализа и 

оптимизации конструкций, обладающих сложной пространственной формой. 

Полученные результаты представляют интерес для широкого круга 

исследователей и инженеров, занимающихся разработкой новых технологий и 

материалов. А применение предложенных подходов, в свою очередь, открывает 

новые возможности для повышения качества продукции, сокращения сроков 

реализации проектов, а также позволяет эффективно решать задачи научно-

технического сопровождения современных инженерных проектов. 
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_____________________________________________________________________________ 

The article presents the results of developing a specialized computer-aided design (CAD) 

system engineered to determine the values and distribution patterns of aerodynamic parameters 

of globoid surfaces. The work involved computational modeling of the aerodynamic flow of a 

given geometry using the Ansys CFX software package. Based on the data obtained, the 

algorithmic structure of the main program and subprograms has been developed, presented in 

the form of detailed flowcharts. 
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