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_____________________________________________________________________________ 

Методы вычислительной гидрогазодинамики широко применяются при решении 

задач внутренней аэродинамики, в частности, для расчетов микроклиматических 

характеристик в помещениях различного типа с целью исследования и оптимизации 

систем воздушного отопления. Цель настоящей работы заключается в численной оценке 

требуемой тепловой мощности оборудования для поддержания необходимых 

параметров микроклимата склада сыпучих материалов шатрового типа в зимних 

условиях на основе трехмерного CFD-моделирования внутреннего конвективного 

теплообмена, выполненного в программном комплексе ANSYS Fluent в стационарной 

RANS-постановке с постоянными теплофизическими свойствами. Получены 

интегральные характеристики воздушной среды (средняя температура, скорость и 

избыточное статическое давление), по потокам тепла через границы вычислены 

удельные вклады и суммарные теплопотери ограждающих конструкций. Данные 

результаты позволяют оценить требуемую тепловую мощность теплогенераторного 

оборудования при принятых параметрах системы, а также дают основания к 

дальнейшей оптимизации и разработке принципиальных схем теплоснабжения и 

размещения вентиляционных каналов. 

_____________________________________________________________________________ 

 

Введение 

Шатровые склады для сыпучих материалов – это большепролетные 

сооружения с металлической несущей системой и облегченными ограждающими 

конструкциями, где эксплуатационная надежность и энергоэффективность 

напрямую зависят от правильно организованного микроклимата [1, 2]. Для таких 

помещений ключевыми являются: 

– поддержание положительной температуры в рабочей зоне при 

экстремально низких наружных температурах; 

– исключение локальной конденсации и обмерзания ограждений; 

– минимизация стратификации температуры и застойных зон; 

– обеспечение безопасной эксплуатации теплогенерирующего и 

транспортного оборудования; 
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– ограничение избыточного давления, возникающего при воздушном 

отоплении; 

– рационализация теплопотерь через элементы ограждающих конструкций 

(прежде всего через покрытие). 

Рассматриваемый объект – склад сыпучих негорючих материалов, который 

относится к помещениям с пониженной пожарной опасностью категории Д 

(негорючие вещества в холодном состоянии) [3, 4], что предопределяет 

приемлемые схемы теплоснабжения и требования к температурным режимам. 

В отношении складских зданий действуют следующие ключевые 

нормативные положения: 

– СП 57.13330 [5] / СП 56.13330 [6] предписывают принятие температуры, 

относительной влажности и скорости воздуха по требованиям технологии 

хранения и СП 60.13330 [7]. Проектные параметры микроклимата задаются от 

технологических карт хранения груза и уточняются нормами ОВК; 

– СП 60.13330 «Отопление, вентиляция и кондиционирование воздуха» [7]: 

для производственных и складских помещений категорий Г и Д без выделения 

пыли и аэрозолей допустимы воздушные системы; также допускаются 

водяные/паровые с температурой теплоносителя: вода ≤ 115 °С, пар ≤ 130 °С, а для 

встроенных в ограждения водяных систем ≤ 50 °С; возможны электрические или 

газовые системы с ГИИ. Кроме того, п.  5.2 разрешает в нерабочее время снижать 

температуру воздуха в помещениях до значений не ниже +5 °С (для 

производственных), что важно для режимов ожидания и расчета мощности в 

пиковых наружных условиях; 

– 123-ФЗ «Технический регламент о требованиях пожарной                     

безопасности» [3] и СП 12.13130 [4] закрепляют склады негорючих материалов в 

холодном состоянии под категорией Д, что влияет на выбор систем отопления и 

допустимые температуры теплоносителя; 

– Климатические исходные данные для района строительства задаются по 

СП 131.13330 «Строительная климатология» [8], что определяет расчетные 

внешние воздействия и, как следствие, требуемую тепловую мощность 

отопительных приборов. 

Практика проектирования систем ОВиК применяет многоуровневый набор 

методов решения задачи расчета микроклимата и теплового баланса в 

помещениях различного назначения, а также в транспортных средствах. Среди 

основных можно выделить следующие: 

1. Инженерный нормативный теплотехнический анализ (тепловые балансы 

для ограждений и инфильтрации, расчет требуемой мощности и кратностей 

воздухообмена), который позволяет получать оценочные решения, однако не 

учитывает аэродинамическую сложность купольных сооружений [9–11]. 

2. Натурные исследования (полевые измерения) обеспечивают валидацию 

результатов, но при этом более затратны и осуществляются после выбора 

оборудования [12–15]. 

3. Физические (модельные) испытания имеют ограниченную применимость, 

связанную с масштабными тепловыми и турбулентными эффектами, а также 

сложными геометрическими формами сооружений [16, 17]. 

4. Численное (CFD) моделирование наиболее информативный подход при 

прогнозировании параметров микроклимата в помещениях нетипового 

(нестандартного) исполнения [18–22]. Современные постановки решают 
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трехмерную систему уравнений Навье-Стокса, неразрывности и энергии с учетом 

конвекции, теплопроводности, диссипации и, при необходимости, теплового 

источника/стока. На практике, из-за ограничений по вычислительным ресурсам, 

применяются осредненные по времени постановки (RANS-подходы) с моделями 

турбулентности от двухпараметрических (k-ε, k-ω SST, k-ω GEKO)                          

до RSM/EARSM [23–27] для корректного предсказания вторичных течений и 

рециркуляций; дискретизация – методом конечных объемов. 

Перспективность применения методов численного моделирования для 

купольных складов обусловлена выраженной температурной стратификацией, 

мощными рециркуляционными потоками под сводом, а также значительными 

теплопотерями через покрытие. Методы вычислительной гидрогазодинамики 

позволяют: 

– локализовать застойные зоны и скорректировать схему подачи воздуха 

(высота и направление сопел, распределение по периметру), способствуя тепловой 

дестратификации; 

– поэлементно разложить теплопотери (пол, стены, окна, покрытие) и 

ранжировать мероприятия по утеплению и герметизации; 

– оценить избыточное давление и подобрать вытяжные устройства                     

(в т. ч. кровельные) для устойчивого баланса притока/вытяжки; 

– выполнять многовариантные параметрические исследования; 

– подготовить цифровой прототип для последующей валидации и 

моделирования сценариев эксплуатации. 

Цель настоящей работы – на основе методов численного моделирования 

оценить требуемую тепловую мощность и характеристики воздушного отопления 

для поддержания требуемых параметров микроклимата в шатровом складе 

сыпучих негорючих материалов при условно неблагоприятных наружных 

условиях. Предлагается методика численного моделирования внутреннего 

конвективного теплообмена, основанная на усовершенствованной RANS-модели 

турбулентности WJ-BSL-EARSM [27, 28]. Применение данной модели позволяет 

достоверно учитывать анизотропию турбулентных напряжений, вторичные 

течения и зоны сложной циркуляции воздуха, что обеспечивает более точное 

воспроизведение полей скорости и температуры по сравнению с традиционными 

линейными моделями. Такой подход повышает надежность прогноза теплового 

режима внутри склада при различных климатических и технологических 

условиях. 

Представленные результаты служат основанием для подбора мощности 

теплогенераторного оборудования и схемы воздухообмена, соответствующих 

эксплуатационным и нормативным требованиям, а также энергоэффективности 

складских помещений. 

Методы исследования 

В текущей работе Объектом исследования является склад сыпучих 

материалов, конструкция которого представляет собой несущую систему с 

радиальными и кольцевыми стальными балками, обшитыми стальными гофро-

листами (рис. 1). 
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Рис. 1. Объект исследования: а – фотография; б – план; в – разрез 

 

Климатические условия для проектирования сооружений устанавливаются в 

соответствии с СП 131.13330.2020 «Строительная климатология» [8]. 

Расположение Объекта исследования соответствует следующим климатическим 

параметрам: 

– снеговой район – III; 

– ветровой район – Iа; 

– минимальная температура – -35°С; 

– максимальная температура – +34°С. 

Трехмерная геометрическая модель склада сыпучих материалов, согласно 

исходным данным, разрабатывалась в ПК ANSYS SpaceClaim (рис. 2). 
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Рис. 2. Трехмерная геометрическая модель Объекта исследования в ПК ANSYS 

SpaceClaim: а – изометрическая проекция; б – вид сбоку 

 

Математическое моделирование сопряженного тепломассообмена сводится в 

общем случае к численному решению системы трехмерных нестационарных 

нелинейных уравнений гидрогазодинамики (1) – (3) с учетом уравнений 

теплофизики (4) – (5) [23, 24, 28, 29]: 

– уравнения Навье-Стокса: 

2
,

3

i i i k i i
k ik i

k i k k i i i i

u u u u u up
u F

t x x x x x x x x

              
 + = − +  + −  +  +      

               
 (1) 

где ui – компоненты вектора скорости потока [м/с]; t – время, [с];                                         

p – давление, [Па]; ρ – плотность воздуха, [кг/м3]; η – коэффициент динамической 

вязкости воздуха, [Па·с]; ζ – объемный коэффициент вязкости, [Па·с];                               

Fi – компоненты вектора массовой силы F, [м/с2]; δik – символ Кронекера. 

– уравнение неразрывности: 

( )
0;

i

i

u

t x

 
+ =

 
 

(2) 

– уравнение состояния идеального газа: 

,
m

pV RT
M

=
 

(3) 

где V – объем газа, [м3]; m/M – количество вещества; T – температура, [К];                        

R = 8,314 – универсальная газовая постоянная, [Дж/моль·К]. 

– закон сохранения энергии: 

( )
( )( )

энтальпиявязкостнаятеплопроводностьконвекция источник/стокнестационарность диссипациядиффузия
компонентов

eff j j eff h

j

E
u E p k T h J u S

t

 
 

   
+  + =   − +  + 

 
 
 

  
(4) 

Дифференциальное уравнение конвективного теплообмена с учетом 

теплопроводности (дифференциальное уравнение конвективного теплообмена 

Фурье-Кирхгофа) может быть интерпретировано следующим образом [18, 28]: 
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 
 

 
(5) 

Прямое решение уравнений сопряженного теплообмена с учетом вихрей 

всех масштабов (DNS, Direct Numerical Simulation) при современных 

возможностях ЭВМ практически реализуемо только для очень малых скоростей 

потока и чисто исследовательских задач. Для решения практических наукоемких 

инженерных задач в современной расчетной практике преобладает применение 

подхода RANS/URANS, система уравнений которого принимает следующий                   

вид [23, 24]: 

– осредненные по времени уравнения Навье-Стокса: 

2

2

ρ

ρ ρ μ ;
i j

i i i
j

j i j j

u u
u u up

u
t x x x x

        + = − + −
    

 

(6) 

– осредненное по времени уравнение неразрывности: 

0,i

i

u

x


=



 

(7) 

где p  – осредненное по времени давление, [Па]; индексы i = 1, 2, 3 и j = 1, 2, 3 

соответствуют координатам x, y, z. Напряжения Рейнольдса 
i ju u   – 

дополнительные 6 неизвестных к параметрам осредненного движения воздушных 

масс. 

В текущем исследовании замыкание системы разрешаемых уравнений 

осуществляется путем моделирования турбулентности RANS-подходом WJ-BSL-

EARSM, относящегося к группе явных алгебраических моделей рейнольдсовых 

напряжений [27, 28], способствующим корректному расчету траектории движения 

воздушных масс совместно с моделированием тепловых эффектов и механизмов 

теплопереноса. 

ANSYS Fluent реализует численное решение уравнений гидрогазодинамики и 

теплообмена методом конечных объемов (МКО) [28]. Интегральное 

представление законов сохранения (массы, импульса и энергии) обеспечивает их 

соблюдение как локально в каждом контрольном объеме, так и глобально во всей 

расчетной области в целом. Расчетная сетка формирует совокупность конечных 

объемов, центры которых содержат узлы со значениями вычисляемых 

неизвестных в процессе расчета. 

Конечно-объемная сетка разрабатывалась в ПК ANSYS Fluent Meshing. С 

целью повышения точности в зонах у стен (wall) использованы пристеночные 

призматические слои сетки. Размерность расчетной конечно-объемной сетки 

составляет ~ 500 тыс. ячеек и принята исходя из проведенного исследования 

сеточной независимости результатов (температуры и скорости потока) в 

контрольных точках мониторинга. Конечно-объемная модель и ее параметры 

приведены на рис. 3 и в табл. 1 соответственно. 
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Рис. 3. Конечно-объемная сетка: а – поверхностная сетка; б, в – объемная сетка 

 

Таблица 1 

Параметры конечно-объемной сетки 
Параметр Значение 

Поверхностная сетка 

Минимальный размер 0,8 м 

Максимальный размер 0,8 м 

Скорость роста 1,2 

Призматические слои 

Количество слоев 3 

Коэффициент перехода 0,272 

Скорость роста 1,2 

Объемная сетка 

Минимальный размер 0,4 м 

Максимальный размер 0,8 м 

Переходный слой 2 

Метод генерации Poly-hexcore 

 

Точность и достоверность численного моделирования, наряду с сеточной 

дискретизацией, в значительной степени определяются корректностью граничных 

и начальных условий, а также обоснованным выбором параметров модели, 

обусловленных постановкой задачи (табл. 2, рис. 4). 
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Таблица 2 

Параметры расчетной модели 
Параметр Описание Значение 

Граничные условия 

(рис. 4) 

На входе в 

расчетную область 

(inlet) 

Массовый расход  60 кг/с 

Температура 60°C 

Интенсивность 

турбулентности 
1 % 

Характерный масштаб 

турбулентности 
1 м 

На выходе из 

расчетной области 

(outlet) 

Дополнительное 

давление 
0 Па 

Отсутствие обратного 

потока 
Prevent reverse flow 

На стенках (wall) 

Прилипание потока 

(no slip wall) 
0 м/сx y zu u u= = =

 

Температура покрытия 

(кровли), стен и окон 

склада 

(равна температуре 

наружного воздуха) 

-35°C 

Температура пола склада 0°C 

Плотность теплового 

потока на стенке въезд 

(условие 

теплоизолированной 

стенки) 

0 Вт/м2 

Начальные условия 

Гибридная 

инициализация 

Поле скорости 
2 0 =

 

Условие на стенке 0
стенкаn


=


 

Условие на входе 
inlet

V
n

⊥


=


 

Условие на выходе 0=
 

Поле давления 2 0P =
 

Воздушный домен 
Температура воздуха -35°C 

Статическое давление 1 атм. 

Свойства среды Сжимаемый воздух 
Модель 

идеального газа 

op

w

p p

R
T

M

+
=
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Рис. 4. Граничные условия 

 

Численный аэродинамический расчет конвективного теплообмена 

осуществлялся в трехмерной стационарной RANS-постановке с параметрами 

моделирования, приведенными в табл. 3. 

Таблица 3 

Параметры численного расчета 

Параметр Описание 

Решатель 
Основанный на решении уравнения для 

давления (Pressure based) 

Численная схема Связанный алгоритм (Coupled) 

Пространственная дискретизация 
Неявная формулировка второго порядка 

(Implicit second-order upwind) 

Количество итераций 500 

 

В данном расчете сопряженный теплоперенос в ограждающих конструкциях 

моделируется упрощенно – граничное условие конвективного теплообмена (или 

условие первого рода с заданной температурой) учитывает теплофизические 

свойства и толщину покрытия без существенного влияния на искомые 

интегральные показатели микроклимата. 

Результаты 

В результате расчетного исследования внутреннего конвективного 

теплообмена складского помещения сыпучих материалов шатрового типа 

получены изополя средних скоростей (рис. 5а), избыточного давления (рис. 5б), 

температуры (рис. 5в, 5г) и векторное поле скоростей (рис. 5д) воздушных потоков 

в вертикальной плоскости симметрии, а также трехмерные линии тока в объеме 

расчетной области (рис. 5е). 
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Рис. 5. Результаты CFD-моделирования: а – средняя скорость, м/с; б – статическое 

давление, Па; в, г – температура, °C; д – векторное поле скоростей, м/с; е – трехмерные 

линии тока, м/с 

 

Для количественной оценки результатов определены теплопотери через 

границы воздушного домена и средние интегральные параметры воздушной 

среды, представленные в табл. 4 и 5 соответственно. 

Таблица 4 

Теплопотери через ограждающие конструкции 
Наименование ограждающей поверхности Теплопотери, Вт 

Пол 1 919 

Окна -24 938 

Покрытие -3 240 768 

Стены -277 516 

Сумма -3 541 303 
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Таблица 5 

Средние интегральные теплофизические характеристики среды 
Параметр Значение 

Средняя температура воздуха, °C 3,13 

Средняя скорость воздуха, м/с 0,30 

Среднее избыточное давление, Па 15,79 

 

Из расчетного анализа результатов установлено, что теплопотери через 

стены составляют -277516 Вт, что в 11,68 раз ниже теплопотерь через покрытие, 

которое составляет -3240768 Вт (табл. 4), в связи с чем отсутствует 

целесообразность в утеплении стен. Теплоизоляция покрытия положительно 

скажется на тепловом балансе помещения, минимизируя теплопотери через 

крышу. Это приводит к снижению необходимой мощности теплогенератора и, 

следовательно, уменьшению энергопотребления для поддержания заданной 

температуры внутри помещения. Однако применение дополнительного 

утеплителя увеличивает вес покрытия, что приведет к повышенной нагрузке на 

кровлю; требуется расчетный анализ несущей способности с целью недопущения 

перегруза конструкций. 

Для поддержания необходимого температурного режима в помещении 

рекомендуется принять характеристики системы обогрева теплогенераторами с 

подачей тепла через вентиляционные каналы не ниже приведенных в табл. 2 и на   

рис. 4 в качестве граничных условий Inlet для численного моделирования – массовый 

расход не ниже 60 кг/с и температура поступающего воздуха не ниже 60 °C, а также 

суммарной мощностью оборудования не ниже 3 541 303 Вт (табл. 4). 

С целью эффективного удаления нагнетаемого воздуха и снижения 

избыточного давления в воздушной среде рекомендуется установить систему 

принудительной вентиляции на кровлю исследуемого Объекта. Повторный 

расчетный анализ после подбора теплогенераторного оборудования и разработки 

принципиальных схем расположения вентиляционных каналов позволит уточнить 

теплофизические характеристики среды внутри складского помещения. 

Выводы 

На основе проведенного численного моделирования конвективного 

теплообмена на складе сыпучих материалов шатрового типа можно сделать 

следующие выводы:  

1. Разработана трехмерная аэродинамическая модель склада сыпучих 

материалов шатрового типа в стационарной постановке, учитывающая процессы 

теплообмена во внутренней среде. 

2. Рассчитан вклад ограждающих конструкций (стены, покрытие, окна и пол) 

в общие теплопотери: кровля -3 240 768 Вт (≈ 91,41 %), стены -277 516 Вт                           

(≈ 7,84 %), окна -24 938 Вт (≈ 0,70 %), пол +1 919 Вт (≈ 0,05 %);                                  

суммарно -3 541 303 Вт. 

3. Для поддержания требуемой неотрицательной температуры воздуха 

внутри помещения при принятых условиях необходима тепловая мощность не 

менее 3,541 МВт (равная суммарным теплопотерям воздушного домена при 

заданных фиксированных температурах ограждений). 

4. При расчетных параметрах притока m  = 60 кг/с, Tin = 60°С достигаются 

средние интегральные параметры воздушной среды: Tср = 3,13°С, uср = 0,30 м/с, 

срp  = 15,79 Па. 
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5. Для эффективного удаления нагнетаемого воздуха и снижения 

избыточного давления целесообразна организация кровельной вытяжки 

(последующий расчет с учетом ее расхода позволит уточнить тепловой баланс и 

требуемую мощность оборудования). 
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_____________________________________________________________________________ 

Computational fluid dynamics methods are widely used to solve internal aerodynamics 

problems, particularly for calculating microclimatic characteristics in premises of various types 

to study and optimise air-heating systems. This study aims to numerically assess the thermal 

power required by equipment to maintain the necessary microclimate parameters of a tent-type 

bulk-materials warehouse under winter conditions, based on three-dimensional CFD-modeling 

of internal convective heat transfer carried out in the ANSYS Fluent software package in a 

steady RANS formulation with constant thermophysical properties. Integral characteristics of 

the air medium have been obtained (mean temperature, velocity, and excess static pressure). 

Based on the heat fluxes through the boundaries, the specific contributions and the total heat 

losses of the enclosing structures have been calculated. These results provide a basis for 

evaluating the thermal power required for the heat-generating equipment under the adopted 

system parameters, and also provide grounds for further optimization and for the development 

of principal schemes of heat supply and the placement of ventilation ducts. 

_____________________________________________________________________________ 
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