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_____________________________________________________________________________ 

В статье приведен порядок испытаний тепловой мощности теплообменных 

аппаратов тепловых пунктов централизованных систем теплоснабжения. 

Проанализировано влияние отклонений в их работе на энергоэффективность систем 

теплоснабжения. Предложены расчетные зависимости и последовательность их 

применения для пересчета параметров работы теплообменников с испытательного на 

эксплуатационный режимы работы. 

_____________________________________________________________________________ 

 

Введение 

Современные системы теплоснабжения представляют собой совокупность 

технологически взаимосвязанных между собой источников теплоты, тепловых 

сетей и сооружений на них, а также систем теплопотребления [1–3]. 

Многообразие теплопотребляющего оборудования и различные требования к 

параметрам теплоносителя в нем (например, давление, температура и др.) 

приводят к практической невозможности подключения от одного 

централизованного источника тепловой энергии к теплосети всех систем 

теплопотребления без применения дополнительных технических устройств. 

Данными устройствами в системах теплофикации являются теплообменные 

аппараты, в которых осуществляется передача теплоты от теплоносителя с 

«высокими» параметрами к теплоносителю, циркулирующему в контуре системы 

теплопотребления. 

Теплообменники являются ключевыми элементами, от качественной работы 

которых зависит энергоэффективность и надежность эксплуатации всей системы 

теплоснабжения. 

Материалы и методы 

При проектном конструировании теплообменных аппаратов задаются 

следующими исходными параметрами: расчетное количество тепла с учетом 

климатических норм [4–6], передающееся в теплообменнике; расчетные 

температуры теплоносителя на входе и выходе на стороне обоих контуров 

теплообменника [7–9]; расходы теплообменивающихся сред при расчетном 

режиме работы теплообменника; максимально допустимые потери давления в 

потоках теплоносителей. 
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В некоторых случаях к установке принимают теплообменные аппараты с 

несколько большей поверхностью нагрева: 

– в случае применения кожухотрубных теплообменников общее количество 

последовательно устанавливаемых их секций принимается с округлением до 

ближайшего большего числа; 

– при конструировании пластинчатого теплообменного аппарата программа 

расчета предлагает установить дополнительные пластины поверхности нагрева с 

увеличением количества параллельных каналов в потоках теплоносителей. 

Резервирование поверхности нагрева приводит к тому, что фактические 

теплогидравлические характеристики установленного теплообменника будут 

несколько отличаться от их расчетных величин на основе принятых исходных 

данных для расчета теплообменника. 

Определяющее влияние на отклонение от расчетных параметров 

теплообмена оказывает эксплуатационное загрязнение поверхности нагрева 

накипью, ржавчиной, маслянистой пленкой, теплопроводность которых в десятки 

раз меньше теплопроводности материала теплопередающей стенки 

теплообменника и снижает коэффициент теплопередачи k, (Вт/(м2·°С)). 

На начальном этапе загрязнения система количественного регулирования 

теплопередачи компенсирует потерю тепловой мощности путем увеличения 

расхода греющего теплоносителя, сопровождающегося повышением его 

температуры на выходе из теплообменника и снижением энергоэффективности 

его применения. Также загрязнение способствует росту не только термического, 

но и гидравлического сопротивления теплообменника с увеличением потребления 

электроэнергии сетевыми насосами при прокачке большего количества 

теплоносителя. При достижении критических значений сопротивлений наступает 

фаза технических ограничений поставок тепловой энергии потребителям. 

При эксплуатации кожухотрубных теплообменных устройств с течением 

времени имеет место негерметичность поверхности нагрева, из-за чего 

происходит переток теплоносителя между теплообменивающимися потоками. 

Для восстановления целостности элементов поверхности нагрева производят 

«отглушку» (вывод из работы) теплообменных труб с уменьшением поверхности 

нагрева и снижением теплопроизводительности и энергоэффективности 

теплообменника. В результате коррозионных процессов и термической 

деформации элементов нарушается конструкция трубного пучка теплообменника, 

что снижает эффективность омывания его поверхности нагрева теплоносителем и 

уменьшает коэффициент теплопередачи и теплопроизводительность 

теплообменника. 

Для своевременного выявления отклонений от расчетных режимов и 

параметров эксплуатации проводят испытания теплообменных устройств на 

теплопроизводительность. Рекомендуется проводить эти испытания и при вводе 

теплообменника в эксплуатацию после монтажа или капитального ремонта для 

фиксации его фактических начальных теплогидравлических характеристик. 

Результаты исследований 

Целью таких испытаний является определение максимальной фактической 

теплопроизводительности теплообменника и энергоэффективности его 

применения. 

Теоретической основой для выполнения теплотехнических расчетов при 

испытаниях теплообменников являются [10–12]: уравнение теплового баланса 
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теплообменника; основное уравнение теплопередачи; уравнение массового 

расхода теплоносителя; уравнение характеристики теплообменного аппарата. 

Благодаря предложенной профессором Е. Я. Соколовым [5, 13, 14] замене 

экспоненциальной зависимости разности температур теплообменивающихся сред 

на линейную функцию от максимальной разности температур теплоносителей на 

входе в теплообменное устройство, теплотехнические расчеты теплообменников 

существенно упрощаются и становится возможной аналитическая обработка 

результатов их испытаний, включая корректный пересчет показателей 

теплообмена с экспериментального на расчетный и эксплуатационный режимы 

работы с целью анализа фактического технического состояния теплообменника. 

Для записи параметров теплоносителей в теплообменниках применяют 

следующие условные обозначения: τ1 – температура греющего теплоносителя из 

тепловой сети на входе в теплообменник, °С; τ2 – то же на выходе из 

теплообменника в теплосеть, °С; Т1 – температура нагреваемого теплоносителя на 

выходе из теплообменника в систему теплопотребления, °С; Т1 – то же на входе в 

теплообменник из системы теплопотребления, °С; Gг – расход греющего 

теплоносителя из тепловой сети на теплообменник, кг/час; Gн – расход 

нагреваемого теплоносителя из системы теплопотребления в теплообменник, 

кг/час; Qт/о – теплопроизводительность теплообменника, Вт. 

Для обозначения фиксируемых или рассчитываемых параметров при 

различных режимах работы теплообменника применяют «верхний» индекс при 

основном условном обозначении: 

– «и» – испытательный режим: любой текущий режим работы 

теплообменника, при котором параметры теплоносителей фиксируются 

измерительными приборами; 

– «р» – расчетный режим: задаваемые входные параметры теплоносителей 

соответствуют условиям проектирования теплообменника [5], а выходные 

параметры и теплопроизводительность теплообменника рассчитываются; 

– «э» – эксплуатационный режим: параметры нагреваемого теплоносителя, 

температура греющего теплоносителя на входе в теплообменник и его 

теплопроизводительность соответствуют проектным величинам, а расход и 

температура греющего теплоносителя после теплообменника рассчитываются [9]; 

– «п» – проектная величина при расчетном режиме. 

Функциональные зависимости, применяемые в теплотехнических расчетах 

теплообменников, являются частью следующей методики. 

1. Уравнение теплового баланса (тепловыми потерями пренебрегают): 

( ) ( )21н21гт/о ττ TTGcGcQ −=−= , Вт, (1) 

где c – удельная массовая изобарная теплоемкость воды, кДж/(кг·°С). 

2. Максимальная разность температур теплоносителей на входе в 

теплообменник: 

21τ T−= , °С. (2) 

3. Уравнение характеристики теплообменного аппарата: 

= мт/о ε WQ , Вт, (3) 

где мм GcW = , Вт/°С – меньший по величине водяной эквивалент одной из двух 

теплообменивающихся сред; 

Gм – расход теплоносителя, кг/ч. 

4. Среднелогарифмический температурный напор в теплообменнике: 
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= , °С, 

(4) 

где Δtб, Δtм – большая и меньшая разности температур двух теплоносителей на 

концах теплообменника, °С. 

5. Основное уравнение теплопередачи: 

срт/о tFkQ = , Вт, (5) 

где k – коэффициент теплопередачи, Вт/м2·°С; 

F – площадь поверхности нагрева, м2. 

6. Безразмерный параметр подогревателя Ф, отражающий единство его 

тепловых (k), конструктивных (F, схема присоединения) и гидравлических (W1, 

W2) характеристик в его текущем состоянии: 

21

Ф
WW

Fk




= , 

(6) 

где W1, W2 – водяные эквиваленты теплообменивающихся сред, Вт/°С. 

7. Безразмерная удельная тепловая нагрузка противоточного водоводяного 

теплообменника ε (для расчетного режима): 
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(7) 

где Wб, Вт/°С – больший по величине водяной эквивалент одной из двух 

теплообменивающихся сред; 

8. Условная тепловая нагрузка теплообменника Q* при равенстве водяных 

эквивалентов греющего (Wн – искомая величина) и нагреваемого (Wз – заданная 

величина) теплоносителей: 

Ф1

Ф
* з

+
= WQ , Вт. (8) 

9. Определяем водяной эквивалент греющего теплоносителя: 

– случай 1 (Qт/о > Q*), что соответствует Wн > Wз (I-я ступень 

теплообменника ГВС смешанной схемы): 
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(9а) 

где a = 0,35, b = 0,65 – расчетные коэффициенты для противоточной схемы 

подключения теплообменников; 

– случай 2 (Qт/о < Q*), что соответствует Wн < Wз (сетевой 

водоподогреватель): 
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(9б) 

– случай 3 (Qт/о = Q*), что соответствует Wн = Wз (теплообменник химически 

очищенной воды в котельной, II-я ступень теплообменника ГВС смешанной 

схемы). 
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10. Коэффициент теплопередачи и фактор загрязнения поверхности нагрева: 

ff R
k

R
k

+=+++=
ч21э

1

λ

δ

α

1

α

11
, м2·°С/Вт, (10) 

где kэ – эксплуатационный коэффициент теплопередачи поверхности нагрева, 

Вт/м2·°С; 

α1 – коэффициент теплоотдачи от греющего теплоносителя к разделяющей стенке, 

Вт/м2·°С; 

α2 – коэффициент теплоотдачи от разделяющей стенки к нагреваемому 

теплоносителю, Вт/м2·°С; 

δ – толщина разделяющей теплопередающей стенки, м; 

λ – коэффициент теплопроводности материала стенки, Вт/м·°С; 

kч – коэффициент теплопередачи «чистой» поверхности нагрева, Вт/м2·°С; 

Rf – фактор загрязнения, или сопротивление теплопроводности отложений на 

поверхности нагрева теплообменника, м2·°С/Вт. 

11. Гидравлическое сопротивление теплообменника: 
2GSp = , Па, (11) 

где S – сопротивление теплообменника, Па·с2/кг2; 

G – массовый расход теплоносителя через теплообменник, кг/с. 

12. Показатель энергоэффективности «чистого» теплообменника: 

п
2

п
1

п
2

п
1

ч
τ

ττ

T
E

−

−
= . (12) 

13. Снижение энергоэффективности теплообменника в процессе 

эксплуатации определяется по зависимости: 

100
ε

ч

э
ч 
−

=
E

E
E , %. (13) 

Автором приводится уточненный порядок выполнения работ при 

испытаниях теплообменников на тепловую эффективность. 

1. Стабилизация параметров теплоносителей за счет отключения из работы 

на период испытаний системы автоматического регулирования (САР) тепловой 

нагрузки теплообменника. 

2. Снятие показаний измерительных приборов при работе теплообменника 

на фиксированной тепловой нагрузке (согласно схеме, представленной на рис. 1) 

и последующее включение в работу САР. 

 

 
 

Рис. 1. Принципиальная схема испытываемого теплообменника и перечень основных 

фиксируемых или рассчитываемых параметров 
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2. Расчет основных технологических и термодинамических характеристик 

работы рассматриваемого теплообменника в соответствии с предложенным на 

рис. 2 алгоритмом (методикой). 

3. Проведение анализа результатов испытаний и расчетов с последующей 

разработкой рекомендаций по эксплуатации. 

 

 
 

Рис. 2. Алгоритм (методика) расчета характеристик работы теплообменника 

 

Заключение 

В качестве выводов по проведенным численным исследованиям отметим, 

что предложенный порядок испытаний и расчетные зависимости применимы для 

водоводяных подогревателей всех конструкций и функционального назначения. 

Перед проведением тепловых испытаний теплообменника в обязательном 

порядке следует провести его гидравлическое испытание на герметичность 

поверхности нагрева с целью исключения искажений исходных данных для 

расчетов из-за перетока теплоносителей. 
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_____________________________________________________________________________ 

The article describes the procedure for testing the thermal capacity of heat exchangers in 

centralized heating systems. It analyzes the impact of deviations in their operation on the energy 

efficiency of heating systems. The article proposes calculation equations and a sequence for 

converting the operating parameters of heat exchangers from test to operational modes. 

_____________________________________________________________________________ 
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